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Abstract

In this study, the nonlinear behavior of a slender beam coupled with a pendulum is investigated numerically in terms of

different system parameters. The structure consisting of a cantilever beam of varying orientation with a tip mass and

pendulum which is attached to the tip mass as a passive vibration absorber is subjected to a vertical sinusoidal base

excitation. The Euler–Bernoulli theory for the slender beam is used to derive the governing non-linear partial differential

equation. The non-linear terms arising from inertia, curvature and axial displacement caused by large transverse

deflections, and the coupling between the primary structure and absorber are retained up to third order. When the

structure is forced in the neighborhood of its resonance, the pendulum absorber (controller) reduces the structure response

because of autoparametric interaction between the beam and pendulum. Autoparametric interaction in the system was

investigated by varying orientation angles, the forcing amplitude, the internal frequency ratio, and the mass ratio in the

neighborhood of the autoparametric resonance. The absorption regions were defined with respect to the system parameters

for the passive vibration absorber.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In the past, vibration of flexible beams and columns, with appendages attached along the span had been
studied by a number of authors. Zavodney and Nayfeh [1] investigated the dynamics of a cantilever beam
carrying a lumped mass. They modeled the structure with cubic geometric and inertia nonlinearities. Crespo
da Silva et al. [2] studied the problem of determining the equilibrium of a beam with a tip mass and the
frequency of infinitesimally small oscillations about the equilibrium state of the beam. They reported that the
natural frequency can be unsatisfactory for large values of the tip mass. Haxton and Barr [3] studied a flexible
column with tip mass fixed to a heavy block undergoing parametric vibration. As a result, the nonlinear
coupling between the spring-mass system and the tip-weighted beam acted as an energy bridge that transferred
energy from the periodic forcing of the spring-mass system into beam deflections. Ertas et al. [4] investigated
experimentally an orientable flexible beam with a tip mass and pendulum. They determined an orientation
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

c damping coefficient of the beam
cp damping coefficient of the pendulum
E modulus of elasticity
Fpv, Fpu pendulum forces acting upon the beam

at y and x-direction, respectively
Fbv, Fbu beam forces acting upon the pendulum

at y and x-direction, respectively
I Moment of inertia
‘p length of the pendulum
L length of the beam
m total mass of the tip and pendulum
mp pendulum mass
mT tip mass
q(t) time modulation of the beam
Qv, Qu generalized forces acting upon the beam

at y and x-direction
Rext, Reff external and effective forces

s arc-length along the beam
u(s, t) relative displacement of the beam at x-

direction
v(s, t), w(s, t) relative displacement of the beam

at y-direction
x, y fixed co-ordinate axis
X, Y fixed global co-ordinate axis
€ygðtÞ base acceleration
€ygv; €ygu base acceleration at y and x directions,

respectively
a orientation angle of the beam
y(s, t) angle of the deflection of the beam with

x-axis
rA mass of the beam per unit length
ob circular frequency of the beam
op circular frequency of the pendulum
O forcing frequency
c(t) pendulum angular displacement
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boundary up to which the pendulum is effective, and showed that this boundary depends on forcing
amplitude.

A useful technique for the elimination of undesirable vibration of problems of structural dynamics and
machinery dynamics has been the application of one or more passive dynamic vibration absorbers. Currently,
the most widely used passive vibration absorbers in engineering include: tuned mass absorbers, impact
absorbers, pendulum-type absorbers, beam absorbers, and last but not least, liquid absorbers. The
previous activities in the area of design, development, and application of tuned vibration absorbers were
provided by Sun et al. [5]. Jacquot [6] developed a technique that gives the optimal dynamic vibration
absorber parameters for the elimination of the excessive vibration in sinusoidal forced Bernoulli–Euler
beams. Kitis et al. [7] proposed an efficient optimal design algorithm for minimizing the vibratory response
of a multi-dof system under sinusoidal excitation over several excitation frequencies. Jordanov and
Cheshnakov [8] used an algorithm to obtain optimal parameters for both linearly and nonlinearly damped
dynamic vibration absorbers. Dahlberg [9] investigated three types of vibration absorbers: classical single-
degree-of-freedom (sdof) absorbers, two sdof discrete absorbers, and a continuous cantilever beam absorber.
The author clearly shows that the continuous vibration absorber is more effective than the other two
absorbers.

In the literature, autoparametric vibration absorbers have been studied extensively for structural and
machinery systems under sinusoidal and random excitation. Cuvalci [10] studied the dynamic behavior of a
beam–pendulum system subjected to a periodic excitation. They investigated an absorption region numerically
and experimentally with respect to forcing amplitude, internal frequency ratio and mass ratio for the passive
vibration absorber. Yaman and Sen [11] studied the orientation effect of nonlinear flexible systems on
performance of the pendulum absorber. They determined the effectiveness of pendulum-type passive vibration
absorber attached to a primary structure whose orientation varies. The orientation at which the absorber is
effective was established, and the factors that affect performance of the absorber were determined. Bishop
et al. [12] investigated the parametrically driven pendulum in a large variety of stable periodic and chaotic
motions for hanging and inverted equilibrium states. The existence of the periodic and chaotic attractors was
verified numerically and experimentally. Queini et al. [13] investigated an active nonlinear vibration absorber
for flexible structures (cantilever beam). The authors assumed an mdof system with quadratic nonlinearities
that possesses two-to-one autoparametric resonances. They developed the equation of motion with quadratic
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nonlinearities and analyzed the system through perturbation techniques and a numerical simulation. The
authors also carried out several experiments and compared the results.

In this paper, the nonlinear system of varying orientation consisting of a flexible beam with an appendage
that has a mass—passive vibration absorber (controller) attached to its tip has been investigated numerically.
This type of device may find widespread application in, for instance, robot arm, antenna, and large space
stations, where heavy sensitive equipment may have to be moved by long flexible arms. Any small motion of
the base results in large amplitude vibrations, causing damage to the equipment. Therefore, to absorb
vibrations of the system, a simple pendulum that is capable of absorbing large portion energy is attached to
the main system. The main objective of this study is to investigate the effects over the absorption region of the
orientation angle, the forcing amplitude, the internal frequency ratio, and the mass ratio. The nonlinear
equations of motion were development to investigate the autoparametric interaction between the beam and
pendulum. A series of parametric numerical studies were performed to study the response of the system under
sinusoidal excitation. To investigate the nonlinear dynamics under autoparametric conditions
ðO ¼ ob ¼ 2opÞ, the internal frequency ratio was varied between 0.46 and 0.54, the mass ratio varied
between 0.1 and 1.0, and the forcing amplitude varied between 0.0001 and 0.001 for different orientation
angles.
2. Equations of motion of the beam and pendulum

In this section, we derived the governing equation of motion using the Euler–Bernoulli theory. We assumed
that the thickness of the beam/column is so small compared with the length that the effects of shearing
deformation and rotatory inertia of the beam/column can be neglected [9]. The differential equations
governing the flexural motion of inextensional beams, taking into account all the geometric nonlinearities in
the system, were formulated in Zavodney and Nayfeh [1], and in Cuvalci [10]. A brief derivation of the
equations for an inextensional beam-tip mass with a pendulum is presented below. The beam is assumed to be
initially straight, of length L, and of constant mass rA per unit length and constant stiffness. The quantity EI,
where E is Young’s modulus of the material and I is the principal cross-sectional area moments of inertia, is
the bending stiffness of the beam and a is the orientation angle of the beam. The deformed beam is shown in
Fig. 1. Let uðs; tÞ and vðs; tÞ denote the components along the inertial directions ðx; yÞ of the displacement of the
beam’s centroidal axis C (which is assumed to be coincident with the beam’s elastic axis) of a cross-section A

due to elastic deformation of the beam. s is used to denote arc-length along the beam, t is the dimensional
time, ygðtÞ is the base displacement. For inextensional beams, (1+u0)2+v02 ¼ 1 where ( )0 ¼ q( )/qs. The total
axial displacement is

uðs; tÞ ¼

Z s

0

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v02

p
� 1Þdsþ ygu. (1)
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Fig. 1. Cantilever beam–pendulum with a concentrated mass subjected to vertical base motion.
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The governing equations of motion and boundary conditions can be obtained from Hamilton’s extended
principle as in Crespo da Silva et al. [2], i.e.

dI ¼

Z t2

t1

ðdL1 þ dW 1Þdtþ

Z t2

t1

fm½ _u d _uþ ð_vþ _ygvÞ d_v� þ Fpvdv� ½Fpu þmg sinðaÞ�dugs¼L dt ¼ 0, (2)

L1 ¼
1

2

Z L

0

frA½ð_vþ _ygvÞ
2
þ _u2� � EIðv00

2
þ v00

2
v0
2
Þ þ lð1� ð1þ u0Þ2 � v0

2
Þgds, (3)

where l is a Lagrange multiplier, Fpv, Fpu are the pendulum forces acting upon of the beam at y- and x-
direction, respectively, m is the sum of the tip and pendulum mass

dW 1 ¼ �

Z L

0

ðrAg sinðaÞduþ c_v dvÞds. (4)

L1 and dW1 are the Lagrangean and the virtual work for motion, respectively and c is the damping
coefficient of the beam. Dots in the equations denote the differentiation with respect to time, t. For simplicity,
it is assumed that the beam is slender, and that its torsional frequencies are much higher than its flexural
frequencies, so that the small effects of rotary inertia and torsional dynamics are neglected. By carrying out the
variations in Eq. (2), the differential equations of motion and a boundary condition equation governing the
motion of the beam are readily obtained. The differential equations of motion are:

rAð€vþ €ygvÞ þ EIv0000 þ EIðv0ðv0v00Þ0Þ0 � lv0½ �
0
¼ Qv ¼ �c_v, (5)

rA €u� ½lð1þ u0Þ�0 ¼ Qu ¼ �rAg sinðaÞ. (6)

The associated boundary conditions obtained from Eq. (2) can be written as

uð0; tÞ ¼ 0; vð0; tÞ ¼ 0 and v0ð0; tÞ ¼ 0 at the fixed end; s ¼ 0, (7)

lðð1þ u0ÞÞs¼L ¼ �Fpu �mg sinðaÞ �m €us¼L,

EIv00ðL; tÞ ¼ 0,

EIv000ðL; tÞ þmg sinðaÞv0ðL; tÞ ¼ mð€vþ €ygvÞs¼L � Fpv at the free end; s ¼ L. (8)

Eqs. (5), (6) and the constraint relation, (1+u0)2+v02 ¼ 1, govern the flexural motion of the beam when the
torsional frequencies are much higher than the bending frequencies.

By making use of the cantilever boundary conditions, Eq. (6) can be integrated once to yield

lðs; tÞ ¼
1

1þ u0
�

Z L

s

rA €udsþ

Z L

s

Qu ds� Fpu �mg sinðaÞ �m €us¼L

� �
. (9)

Substitution Eq. (9) into Eq. (5) yields the following integro-partial differential equation for v(s, t):

rAð€vþ €ygvÞ þ EIv0000 þ EI v0ðv0v00Þ0
� �0

þ v0
Z L

s

rA €uds

� �� �0
� v0

Z L

s

Qu ds

� �� �0
� ½v0ð�Fpu �mg sinðaÞ �m €us¼LÞ�

0 ¼ �c_v. ð10Þ

Differentiating Eq. (1) twice with respect to time, and substituting into Eq. (10) yields

rA€vþ c_vþ EIv0000 þ EI ½v0ðv0v00Þ0�0 �
1

2
rA v0

Z L

s

q2

qt2

Z s

0

v0
2
dsds

� �0
�

1

2
m v0

q2

qt2

Z L

0

v0
2
ds

� �0
þ ½v0rAðL� sÞ�0f €ygu þ g sinðaÞg þm½v0�0f €ygu þ g sinðaÞg þ Fpu½v

0�0 þ rA €ygv ¼ 0. ð11Þ

In this equation, the terms in the first bracket are the static hardening nonlinearities which arise from the
potential energy stored in bending (nonlinear curvature), those in the second and third bracket are the inertial
nonlinearities, with a net softening effect, due to the kinetic energy of axial motion. Eq. (11) is in full
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agreement with the planar version of the equation derived by Crespo da Silva et al. [2] using the extended
Hamilton principle, if we ignore Fpu, Fpv and gravitational effects as well as a ¼ 0.

2.1. Time-dependent boundary conditions

In many cases the boundary conditions are not homogeneous but time dependent. In our case, it is not
difficult to see that the boundary condition at s ¼ L is not homogeneous. We shall attempt to find a solution
of the problem by transforming it into a problem consisting of homogeneous boundary conditions. To this
end, let us assume a solution of the problem described by Eq. (11) in the form below [17]

vðs; tÞ ¼ wðs; tÞ þ _ðsÞPðtÞ (12)

so that, we transform the problem for the variable vðs; tÞ into a problem for variable wðs; tÞ. The function _ðsÞ is
chosen to render the boundary conditions for the variable wðs; tÞ homogeneous.

So the boundary conditions for wðs; tÞ are:

wð0; tÞ ¼ �_ð0ÞPðtÞ and w0ð0; tÞ ¼ �_0ð0ÞPðtÞ, (13)

fEIw000ðs; tÞ �m €wðs; tÞg
		
s¼L
þmg sinðaÞw0ðs; tÞ

		
s¼L
¼ PðtÞ � fEI _000ðsÞPðtÞg

		
s¼L

�mg sinðaÞ_0ðsÞPðtÞ
		
s¼L
þ fm_ðsÞ €PðtÞg

		
s¼L

, ð14Þ

where PðtÞ is m €ygvðtÞ � Fpv.
To render the boundary conditions homogeneous, we must have

_ð0Þ ¼ 0; _0ð0Þ ¼ 0; EI _000ðsÞ
		
s¼L
¼ 1; _00ðsÞ

		
s¼L
¼ 0; _0ðsÞ

		
s¼L
¼ 0; _ðsÞ

		
s¼L
¼ 0. (15)

Considering the conditions above, the third of the boundary conditions can be written as

d3_ðsÞ

ds3
¼

1

EI
H½s� ðL� �Þ�, (16)

where H½s� ðL� �Þ� is a Heaviside function and e is a small quantity. The solution of the _ðsÞ is given as

_ðsÞ ¼
1

6EI
½s� ðL� �Þ�3H½s� ðL� �Þ�. (17)

The transformed problem consists of the nonhomegenous differential equation and homogeneous boundary
conditions:

rA €wþ c _wþ EI w0000 þ
1

6EI
½s� ðL� �Þ�3H½s� ðL� �Þ�

� �0000
PðtÞ


 �
þ EIðw0ðw0w00Þ0Þ0

�
1

2
rA w0

Z L

s

q2

qt2

Z s

0

w0
2
dsds

� �0
�

1

2
m w0

q2

qt2

Z L

0

w0
2
ds

� �0
þ ½w0rAðL� sÞ�0ð €ygu þ g sinðaÞÞ

þm½w0�0ð €ygu þ g sinðaÞÞ þ Fpu½w
0�0 þ rA €ygv ¼ 0, ð18Þ

where

1
6
½s� ðL� �Þ�3H½s� ðL� �Þ�
� �0000

¼ d½s� ðL� �Þ�: (19)

The equation of the pendulum, obtained by equating the total moments with respect to the pivot point of
the pendulum to zero, yields

mp‘
2
p
€cþmp‘p½ €wðt;LÞ cos aþ €u1ðt;LÞ sin aþ €yg� sin c

þmp‘p½ €u1ðt;LÞ cos a� €wðt;LÞ sin a� cos c ¼ �mpg‘p sin c� cpð
_cþ _yðt;LÞÞ, ð20Þ

where

uðs; tÞ ¼

Z s

0

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02

p
� 1Þdsþ ygu! u1ðs; tÞ ¼

Z s

0

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02

p
� 1Þds (21)
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and cp is the damping coefficient of the pendulum. Eq. (20) includes the terms _y and €u1 which need to be
defined in terms of w. For this purpose, Eq. (21) is expanded by using binominal expansion and, by eliminating
terms of order higher than three, yields

€u1 ¼ �

Z L

0

ð _w02 þ w0 €w0Þds. (22)

Differentiating (from inextensibility condition) w0 ¼ sinðyÞ once with respect to time, and expanding the
resulting equation using a binominal expansion result in

_y ¼ _w0 þ 1
2
_w0w02, (23)

where _y is the angular velocity of the beam. To obtain the final pendulum equation, substituting Eqs. (22) and
(23) into Eq. (20) gives

€cþ
1

‘p

½ €wðt;LÞ cosðaÞ þ €u1ðt;LÞ sinðaÞ þ €yg þ g� sin c

þ
1

‘p

½ €u1ðt;LÞ cosðaÞ � €wðt;LÞ sinðaÞ� cos cþ
cp

mp‘
2
p

_cþ _w0 þ
1

2
_w0w02

� �
s¼LÞ

( )
¼ 0. ð24Þ

By using the Newton’s second law, the joint forces on the pendulum pivot point shown in Fig. 2 can be
easily obtained. The forces acting on the beam can be easily calculated because of the equilibrium of the forces
at joint: X

F external ¼
X

F effective on the pendulum;
X

F ¼ 0 at the joint of the pendulum; (25)

Fpu ¼ �Fbu ¼ mp‘p½
€c cosðc� aÞ � _c

2
sinðc� aÞ�, (26)

Fpv ¼ �Fbv ¼ mp‘p½
€c sinðc� aÞ þ _c

2
cosðc� aÞ�. (27)

2.2. Linear undamped problem

The governing Eq. (18) is nonlinear, and does not admit a closed-form solution. Therefore, an approximate
solution will be sought that satisfies both the equation and the boundary conditions. We represent the solution
of the nonlinear problem in the form

wðs; tÞ ¼
X

n

fnðsÞqnðtÞ, (28)
cp (� + � (L,t)) 

lp

mpg

 y 

X

Y
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mpl�
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Fig. 2. Free body diagram of the pendulum.
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where fn (s) is the shape function of the nth linear mode, and qn(t) is the time modulation of the nth mode. The
undamped linear free vibration problem under axial loading is governed by

EIw0000 þ rAg sinðaÞ½ð‘ � sÞw0�0 þmg sinðaÞw00 þ rA €w ¼ 0, (29)

which is subject to the boundary condition (7–8). The unimodal solution of this problem is obtained by
applying Adomian decomposition method [14–16]:

fðsÞ ¼ 0:5s2 � 0:10877 sinðaÞs4 þ 0:42336� 10�1 sinðaÞs5 þ ½0:94654� 10�2sin2ðaÞ

þ 0:35963� 10�3o2�s6 � 0:78944� 10�2sin2ðaÞs7 þ � � � þ C2=C1f0:16̄s3

� 0:021754 sinðaÞs5 þ 0:10584� 10�1sinðaÞs6 þ ½0:51376� 10�4o2 þ 0:13522

� 10�2sin2ðaÞ�s7 � 0:13157� 10�2sin2ðaÞs8 . . .g, ð30Þ

where

C2=C1 ¼ � ½1� 0:12359 sinðaÞ þ 0:26844� 10�2sin2ðaÞ þ 0:1619� 10�3o2 � 0:34517

� 10�5 sinðaÞo2 � 0:45423� 10�4sin3ðaÞ�=½0:35� 0:13889� 10�1 sinðaÞ

þ 0:16283� 10�3sin2ðaÞ þ 0:11333� 10�4o2�. ð31Þ

2.3. Temporal problem

Eqs. (18) and (24) are coupled nonlinear equations which characterize the dynamics of the beam–pendulum
system. The system of equations does not have closed-form solutions. The model is governed by a set of partial
differential equations which involve infinite modal series. The Galerkin method is used to obtain a set of
ordinary differential equations form of given partial differential equations for an approximate solution. In this
study, it is assumed that the first mode of the system is dominant, therefore, for the first mode, the truncated
displacement function becomes

w ¼ fðsÞqðtÞ. (32)

By substituting Eq. (32) into the partial differential Eqs. (18) and (24) and orthogonalizing the error with
respect to the eigenfunction, the following ordinary differential equations are obtained for the beam and
pendulum, respectively:

½<1 �<2q
2� €qþ<4 _qþ<3q

3 �<2q _q
2 þ<7 €ygv � K8Fpv

þ ½<5 þ<6½ €ygu þ g� sinðaÞ þ K7Fpu�q ¼ 0, ð33Þ

€cþ
1

‘p

½<8 €q cosðaÞ � <9ð _q
2 þ q €qÞ sinðaÞ þ €yg þ g� sinðcÞ

þ
1

‘p

½�<9ð _q
2 þ q €qÞ cosðaÞ � <8 €q sinðaÞ� cosðcÞ þ

cp

mp‘
2
p

_cþ
cp

mp‘
2
p

½<11 _qþ<10 _qq2� ¼ 0, ð34Þ

where <1 . . .<11 are the Galerkin coefficients of the beam and the pendulum, respectively and defined in
Appendix. Eq. (33) including the first mode terms of the beam–pendulum system is ready for the numerical
analysis. The equations of motion of the beam and the pendulum (33, 34) which were transformed into four
first-order systems were solved by using Runge–Kutta method. This method is extremely accurate, however, it
requires fewer steps for a desired level of accuracy than other methods. This makes it a favorite in numerical
integration of nonlinear differential equation.
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3. Results and discussions

Runge–Kutta method was used for the numerical integration. The results of the integration are presented
for the following system parameters: rA ¼ 0.3925 kg/m, mT ¼ 0.212 kg, L ¼ 0.35m EI ¼ 1.5158N/m2,
c ¼ 0.07 kg s/m, cp ¼ 0.025 kg/s. The system parameters are varied such that the range of the internal
frequency ratio is op/ob ¼ 0.46–0.54, the mass ratio is mp/mT ¼ 0.01–1.0, and the forcing amplitude is
yg ¼ 0.00025 and 0.001m. The natural frequency of the structure with the absorber locked comes out to be
ob ¼ 3.0Hz.

To observe the dynamics of the system, three different analyses were performed numerically. The first
indicates that the beam and the pendulum response is a function of forcing frequency at different orientation
angles. The figures obtained from the first analysis include data obtained by sweeping the range between two
forcing frequencies where the natural frequency of the beam lies. Hence, the border of the autoparametric
region (absorption region) was observed from this sweep.
Fig. 3. Frequency response curves for a ¼ 01: (a) beam response, (b) pendulum response. (}) op=ob ¼ 0:46, (+) op=ob ¼ 0:48, (J)

op=ob ¼ 0:50, (n) op=ob ¼ 0:52, (&) op=ob ¼ 0:54, and (—) beam response with locked pendulum.
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The second analysis includes the effect of different mass ratios ðmp=mT Þ and orientation angle on the
absorption region. For this analysis, the internal frequency ratio ðop=ob ¼ 0:5Þ, the natural frequency
(ob ¼ 3.0Hz), and the forcing amplitude are taken to be constant during the numerical analysis. The figure of
this analysis shows data points that refer to the jump frequencies of the beam during sweep.

The third analysis shows the effect of forcing amplitude and orientation angle on the absorption region. For
this analysis, the mass ratio ðmp=mT ¼ 0:125Þ, the internal frequency ratio ðop=ob ¼ 0:5Þ, and the natural
frequency (ob ¼ 3.0Hz) are taken to be constant. The figure obtained from this analysis show numerical data
points that refer to the jump frequencies of the beam during sweep.

The frequency response curves of the cantilever beam (with and without the absorber) and the absorber for
internal detuning ratios of 0.46, 0.48, 0.50, 0.52, and 0.54 respectively are shown in Fig. 3. The internal
detuning ratio is defined as op=ob. The curve S was obtained with the absorber locked for sweep while the
other curves were obtained with the absorber activated for the sweep. The curve S indicates the characteristic
response of the absorber locked for the sweep, while the curves (A, B, C, D, E) and (F, G, H, I, J) represents
the characteristic response of the cantilever beam with the tip mass and the absorber for the sweep,
Fig. 4. Frequency response curves for a ¼ 201: (a) beam response, (b) pendulum response, (}) op=ob ¼ 0:46, (+) op=ob ¼ 0:48, (J)

op=ob ¼ 0:50, (n) op=ob ¼ 0:52, and (&) op=ob ¼ 0:54.
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respectively. Curves A– E in Fig. 3a correspond to curves F–J in Fig. 3b, respectively. The cantilever beam
response, curves A–E, and the absorber response, curves F–J, are given to show the unidirectional energy
transfer between the modes.

In Fig. 3, the mass ratio ðmp=mT ¼ 0:254Þ, and forcing amplitude (yg ¼ 0.0005m) were selected as constant
to obtain the curves (A–E) with and without the vibration absorber. These curves clearly show that the
absorber effectively reduces the peak amplitude of the cantilever beam (primary structure). On these curves,
the jump phenomenon was observed such as A for the cantilever beam and F for the pendulum during the
sweep. From this figure, it is clear that point A for the cantilever beam and point F for the absorber show the
starting points of the interaction between the modes during the sweep. The region between starting points, A

and A0 or F and F0, is called the absorption region. This type of energy interaction has been reported by other
researchers while investigating nonlinear coupled oscillators [4,10,11]. From Fig. 3a, it is also clear that within
the absorption region the amplitude of the primary structure is lower when the absorber is used. In this region,
Fig. 5. Frequency response curves for a ¼ 401: (a) Beam response, (b) pendulum response, (}) op=ob ¼ 0:46, (+) op=ob ¼ 0:48, (&)

op=ob ¼ 0:50, (n) op=ob ¼ 0:52, and (J) op=ob ¼ 0:54.
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the minimum response of the primary structure is observed at the point which satisfied the autoparametric
conditions ðO ¼ ob ¼ 2opÞ. It is important to note that when the curve AA0 is investigated, the energy transfer
occurs from the absorber to the primary structure at the points between A00 and A0. Therefore, the region
between points A00 and A0 is called the non-absorption region. When the figure is examined, the variation of
the internal detuning ratio changes the absorption region. As can be seen from this variation, the internal
detuning ratio should be 0.5 for the maximum energy interaction between the modes. It is clear that if the
internal detuning ratio is lower or higher than 0.5, unidirectional energy transfer between the modes gets worse
in the absorption region.

Figs. 4–6 show frequency response curves of the cantilever beam with the absorber and the absorber for the
orientation angle of 201, 401, and 601, respectively. As seen from the figures, the absorption region becomes
narrow as the orientation angle varies; hence the jump points also change. While the maximum energy transfer
between the beam and pendulum occurs at op=ob ¼ 0:5 as a ¼ 0 that indicates horizontal position of the
Fig. 6. Frequency response curves for a ¼ 601: (a) beam response, (b) pendulum response, (&) op=ob ¼ 0:46, (+) op=ob ¼ 0:48, (J)

op=ob ¼ 0:50, (K) op=ob ¼ 0:52, and (n) op=ob ¼ 0:54.
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beam, this situation totally changes for a ¼ 201, 401, and 601. For instance, while the maximum energy
transfer occurs at op=ob ¼ 0:48 as the beam is directed at the angle of 401 from the horizontal; i.e. a ¼ 401, the
maximum energy transfer for a ¼ 601 occurs at op=ob ¼ 0:46. This could be explained as follows: when the
orientation angle of the beam increases, the natural frequency of the beam decreases since the axial force gets
larger. Because the autoparametric condition was set up for the horizontal position of the beam, this situation
violates the autoparametric condition between the beam and pendulum. However, it can be seen that the
maximum energy transfer occurs at around the value of op=ob ¼ 0:48 and op=ob ¼ 0:46 as the orientation
angle of the beam becomes 401 and 601 since the new autoparametric conditions occur at these values due to
the variation in the value of op=ob.

Fig. 7 shows the variations of the absorption region with respect to the mass ratio for orientation angle of
01, 201, 401, and 601. To obtain these curves in the figure, the internal detuning ratio (0.5), and the forcing
amplitudes (0.0005m) were taken to be constant, and the mass ratio is varied from 0.1 to 1.0. For different
mass ratios, the curves presented in Fig. 7 are obtained from the frequency response curves; i.e. from the figure
between 3 and 6. In these figures, points A and A00 are used to construct the curves in the figure which show the
variations of the jump points with respect to mass ratio during sweep. It is also observed that the mass ratio
has no significant effect on the absorption region at a constant forcing amplitude if the absorber mass is
greater than 30% of the main mass. In other words, a mass ratio of 0.3 provides large ranges of the absorption
region. However, if the mass ratio is between 0.2 and 0.3, there is some of noticeable change in the absorption
region. In addition, if the mass ratio is less than 0.2, the absorption region becomes very narrow. Therefore, if
the absorber mass is between 20% and 30% of the main mass, a sufficiently wide absorption region in the
neighborhood of the autoparameteric region is obtained. The absorption region dramatically becomes narrow
as the orientation angle increases. In the case that the beam was inclined to 601, there is no absorption region
observed for the mass ratio less than 20%, which indicates that the system is out of the autoparametric
condition.

Fig. 8 shows the variations of the absorption region with the forcing amplitude. To obtain this figure, the
mass ratio (0.254) and the internal frequency ratio (0.5) were selected to be as constant, and the forcing
amplitude was varied from 0.0001 to 0.0015m for the analysis. The figure was obtained from the frequency
response curves for the orientation angles of 01, 201, 401, and 601. The curves show the variation of the jump
points with the forcing amplitude during the sweep. It is observed that the regions in Fig. 8 vary with the
forcing amplitude and orientation angle. Higher forcing amplitudes provide larger absorption regions,
whereas higher orientation angle narrow absorption regions.
Fig. 7. Variation of absorption region with respect to mass ratio: (J) a ¼ 01, (K) a ¼ 201, (+) a ¼ 401, and (&) a ¼ 601.
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Fig. 8. Variation of absorption region with respect to forcing amplitude: (–n–) a ¼ 01, (–K–) a ¼ 201o, (–+–) a ¼ 401, and (–J–)

a ¼ 601.

Fig. 9. The response of the beam at the resonance frequency with respect to internal frequency ratio: (J) a ¼ 01 and (n) a ¼ 601.
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Fig. 9 shows the response of the beam at the resonance frequency with respect to internal frequency ratio.
The values of the response of the beam at the resonance frequency from the frequency response curves (for
instance, Figs 3 and 6) are constructed to obtain the curves in Fig. 9. This figure clearly shows that the
maximum energy transfer occurs at the internal frequency ratio of 0.5 for the orientation angle of 01 and
around the internal frequency ratio of 0.48 for the orientation angle of 601 because of the variation of natural
frequency of the beam. At these points, response of the beam is a minimum. When the internal frequency ratio
deviates from 0.5 or from 0.48, response of the beam increases. When the internal frequency ratio is far greater
or less than 0.5 or 0.48, the coupling between the beam and pendulum cannot be observed. At those internal
frequency ratios, the energy transfer does not occur.
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4. Conclusions

The basic absorption action of the autoparametric system under sinusoidal excitation was comprehensively
investigated numerically. This study involves defining an absorption region for the absorber depending on the
control parameters, which are the internal detuning ratio, mass ratio, forcing amplitude, and orientation
angle. As a result, the effects of these parameters on the absorption region were established by conducting
sweep. The numerical results indicate that the beneficial unidirectional energy transfer occurs between the
cantilever beam with the tip mass and the absorber when the autoparametric condition, O ¼ ob ¼ 2op, is
satisfied. However, the effect of the absorber on the absorption region is related to the internal detuning ratio
and orientation angle. When the detuning ratio and the orientation angle deviates the unidirectional energy
transfer between the modes become less. Therefore, the beneficial effect of the absorber depends on the
internal detuning ratio and orientation angle. In addition, this study shows that while the higher forcing
amplitudes result in larger absorption regions, the increase of the orientation angle narrows these regions. It is
also observed that beneficial effect of the absorber resulting from increasing mass ratio disappear when the
mass ratio is lower than 0.1 or higher than 0.3.
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